
Rendering Radiance 
Animations on the GRID

Vibhor Aggarwal, Kurt Debattista, Gavin Ellis 
and Alan Chalmers
University of Bristol
University of Delhi

Radiance Workshop 2006



High-Fidelity Rendering
Physically-based rendering 

Physically- based quantities/materials
Global illumination
Animations



Motivation
Speedup Rendering

Shared computational resources
Radiance animations can take a long time to render

Distributed method
GRID- like systems



Example: Mine Tunnel Ride

2964 * 768 HQ
2 hours per frame
2,310 frames



Computing on GRID-like systems
Distributively-owned multi-programmed 
computing resources
Large pool of potentially unutilised 
computational resources

Many unused at certain times
Offices 
Labs
Clusters
Screen-saver time

Workload management systems
Condor

Job queuing and monitoring



Computing on GRID-like systems

GRID computing is a different animal from 
distributed computing on a cluster
Issues

Dynamic change of resources
Multi- programmed/multi- user environments

Minimise (no) control/data communication
Deadlock is easy

Fault Tolerance 



A first approach

A queue of frames as jobs
Simple approach
Little implementation 

Simple script



First pass



Example



Problems

Issues
Artefacts produced from different IC samples
Does not take advantage of coherence



Irradiance Cache

Acceleration data structure [Ward et al. 88]
Distributed ray tracing 
Accelerates rendering by an order of 
magnitude

Algorithm
Caches indirect diffuse samples
Interpolates/extrapolates from previous 
samples within radius



IC – Normal Animation

Diffuse only

Pure specular

Diffuse and
specular

Diffuse only



IC – 2nd Frame Normal

Diffuse only

Pure specular

Diffuse and
specular

Diffuse only



IC – 2nd Frame GRID

Diffuse only

Pure specular

Diffuse and
specular

Diffuse only



Our solution

Two pass approach
First pass 

Shoot random rays
Many caches
Merge cache

Second pass
Distribute merged cache
Render animation frames



Irradiance 
Caches

Merged 
Cache

First Pass & Merging



Merged 
Cache

Second Pass



First Pass
Selection of the Frames for the first pass:

Selecting every nth frame
Total number of frames corresponds to total number of processors

Selecting frames after parsing the view file 
Weigh according to change in position and direction



First Pass
Selection of the Frames for the first pass:

Selecting every nth frame
Total number of frames corresponds to total number of processors

Selecting frames after parsing the view file 
Weigh according to change in position and direction



First Pass
Selection of the Frames for the first pass:

Selecting every nth frame
Total number of frames corresponds to total number of processors

Selecting frames after parsing the view file 
Weigh according to change in position and direction



First Pass
Selection of the Frames for the first pass:

Selecting every nth frame
Total number of frames corresponds to total number of processors

Selecting frames after parsing the view file 
Weigh according to change in position and direction



First Pass: Sampling

Render using pseudo random sampling
Good hierarchy 
Progression
Distribution
(0,2) quasi- random sequence

Render until
Time runs out
IC hit/miss ratio threshold
Progressive aspect ensures we can stop whenever 
we want



(0,2) sequence hierarchy – 2 



(0,2) sequence hierarchy – 4 



(0,2) sequence hierarchy – 8 



(0,2) sequence hierarchy – 16 



(0,2) sequence - Distribution



Merging the Cache

The Irradiance cache 
Merged
Shared 

Irradiance 
Caches

Merged 
Cache



Fault Tolerance - problem



Fault Tolerance (WIP)



Second Pass

Same as standard method
Simplicity

Can be used with our various guises of Radiance
Potentially newer versions of Radiance

Issues
Redo frame if not done

Future work
Include fault tolerance at this stage

Compromise simplicity



Fault Tolerance – Second Pass



Implementation
First pass

Modified version of rpict
Could have used rtrace

Second pass 
Standard Radiance rpict and variants

Job distribution and management
Condor system
Shell scripts

Automate process 



Examples

Kalabsha
Art Gallery (-ab 3)
Corridor



Kalabsha merged



Art Gallery (-ab 3) unmerged



Art Gallery (-ab 3) merged



Corridor: ca. 320 frames
Merged Cache - 1hr 12 min
Unmerged Cache - 1hr 40 min

Art Gallery –ab 3: ca. 220 frames
Merged Cache – 4hr 35 min
Unmerged Cache – 5hr 7 min

Kalabsha: ca. 90 frames
Merged Cache - 31 min
Unmerged Cache - 48 min

Timings – 100 procs



Conclusions and Future Work

Underutilised computational resources can be 
put to good use

Radiance for animations
Faster 
Little cost

Learnt a lot about GRID-like computation
Future work

Design GRID- specific parallel rendering algorithms 
Better fault tolerance
Minimum sharing



Thank You!

Contact:
Kurt.Debattista@bristol.ac.uk

Acknowledgments:
CG Bristol
Veronica Sundstedt for Kalabsha and Corridor 

models

mailto:Kurt.Debattista@bristol.ac.uk

	Rendering Radiance Animations on the GRID
	High-Fidelity Rendering
	Motivation
	Example: Mine Tunnel Ride
	Computing on GRID-like systems
	Computing on GRID-like systems
	A first approach
	First pass
	Example
	Problems
	Irradiance Cache
	IC – Normal Animation
	IC – 2nd Frame Normal
	IC – 2nd Frame GRID
	Our solution
	First Pass
	First Pass
	First Pass
	First Pass
	First Pass: Sampling
	(0,2) sequence hierarchy – 2 
	(0,2) sequence hierarchy – 4 
	(0,2) sequence hierarchy – 8 
	(0,2) sequence hierarchy – 16 
	(0,2) sequence - Distribution
	Merging the Cache
	Fault Tolerance - problem
	Fault Tolerance (WIP)
	Second Pass
	Fault Tolerance – Second Pass
	Implementation
	Examples
	Conclusions and Future Work

