
1

Visual Perception of Surface MaterialsVisual Perception of Surface Materials

Roland W. FlemingRoland W. Fleming
Max Planck InstituteMax Planck Institute

for Biological Cyberneticsfor Biological Cybernetics

2

 Different materials, such as quartz, satin and chocolate have
distinctive visual appearances

 Without touching an object we usually have a clear impression of
what it would feel like: hard or soft; wet or dry; rough or smooth

Visual Perception of Material QualitiesVisual Perception of Material Qualities
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Everyday lifeEveryday life
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Material-ismMaterial-ism
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The state of thingsThe state of things
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EdibilityEdibility
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UsabilityUsability
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DungDung
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 The appearance of “stuff”
was a major preoccupation
in C17th Dutch art:
 Sensual quality of things
 Stasis, and contemplation

in Still Life

 Contrast with Italian
Renaissance:
 Perspective and the spatial

arrangement of things
 Drama, events and

dynamism.

Willem Kalf
detail from

Still Life with Silver Jug
Rijksmuseum, Amsterdam

Materials in
Western Art
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Materials inMaterials in
Computer GraphicsComputer Graphics

 Hollywood and the
games industry know
that photorealism
means getting materials
right

 Henrik Wann Jensen,
Steve Marschner and Pat
Hanrahan won a
technical Oscar in 2004
for their work on
Subsurface scattering

Henrik Wann Jensen and Craig Donner
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The visual brainThe visual brain

 Towards a neuroscience of material perception
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 What gives a material its characteristic appearance?

 What cues does the human brain use to identify materials
across a wide variety of viewing conditions?

Research QuestionsResearch Questions
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 Visual estimation of surface reflectance
properties: gloss

 Perception of materials that transmit light
 Refraction
 Sub-surface scattering

 Exploiting the assumptions of the visual system to
edit the material appearance of objects in
photographs

OutlineOutline
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Surface ReflectanceSurface Reflectance

 These spheres look
different because they
have different surface
reflectance properties.

 Everyday language:
colour, gloss, lustre,
etc.

Images: Ron Dror
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Surface ReflectanceSurface Reflectance

 Visual system’s goal:
Estimate the BRDF

f(θi, φi; θr, φr)
BRDF

Images: Ron Dror

16

Confounding EffectsConfounding Effects
of Illuminationof Illumination

  Identical
materials can
lead to very
different
images

  Different
materials can
lead to very
similar images
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Ambiguity betweenAmbiguity between
Reflectance and IlluminationReflectance and Illumination

a(f) = 1 / fµ
µ = 0 µ = 0.4 µ = 0.8 µ = 1.2

µ = 1.6 µ = 2.0 µ = 4.0 µ = 8.0
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Ambiguity betweenAmbiguity between
Reflectance and IlluminationReflectance and Illumination

Under arbitrary combinations of
reflectance and illumination, the
problem is ill-posed (unsolvable)
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HypothesisHypothesis

Humans exploit statistical regularities
of real-world illumination in order to

eliminate unlikely image interpretations

20

Real-world IlluminationReal-world Illumination

Directly from
luminous
sources

Indirectly,
reflected
from other
surfaces

Illumination at a point in space: amount of light arriving
from every direction.
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Photographically capturedPhotographically captured
light probeslight probes ( (DebevecDebevec  et alet al., 2000)., 2000)

Panoramic projectionPanoramic projection
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Statistics of typicalStatistics of typical
IlluminationIllumination  (  (DrorDror et al. 2004) et al. 2004)

 Intensity histogram is heavily
skewed
 Few direct light sources
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Statistics of typicalStatistics of typical
IlluminationIllumination  (  (DrorDror et al. 2004) et al. 2004)

 Typical 1/f amplitude spectrum

24

HypothesisHypothesis

Humans exploit statistical regularities of
real-world illumination in order to

eliminate unlikely image interpretations
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Dismissing unlikelyDismissing unlikely
interpretationsinterpretations

Blurry featureBlurry feature

2 interpretations:

  Sharp reflection, blurry world
  Blurry reflection, sharp world

But the world usually isn’t blurry!

Therefore it is probably a
blurry reflection
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Dismissing unlikelyDismissing unlikely
interpretationsinterpretations

 In practice, unlikely image
interpretations do not need
to be explicitly entertained

 Under typical illumination
conditions, different
materials yield diagnostic
image features that are
responsible for their ‘look’

 The brain doesnThe brain doesn’’t need tot need to
model the physics, it justmodel the physics, it just
needs to look out for tell-needs to look out for tell-
tale image featurestale image features
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 Context has surprisingly little effect on apparent gloss

ObservationsObservations
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FindingsFindings

 Subjects are good at judging
surface reflectance across
real-world illuminations:
‘gloss constancy’

BeachBeach
Light probeLight probe

CampusCampus
Light probeLight probe

Single pointSingle point
 source source

GaussianGaussian
1/f Noise1/f Noise

 Subjects are poorer at
estimating gloss under
illuminations with atypical
statistics.
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Illuminations haveIlluminations have
skewed intensity histogramsskewed intensity histograms
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OriginalOriginal

Illumination distributionIllumination distribution
is important is important ……

Campus

Pink noise

ModifiedModified
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…… but isn but isn’’t everythingt everything

White noise White noise withwith
histogram ofhistogram of Campus CampusCampus originalCampus original
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HeegerHeeger-Bergen texture synthesis-Bergen texture synthesis

Input textureInput texture Synthesized textureSynthesized texture

Treat illumination maps as if they are stochastic texture

Taken from Pyramid-Based Texture Analysis/Synthesis
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Wavelet StatisticsWavelet Statistics

BeachBeach BuildingBuilding CampusCampus EucalyptusEucalyptus

UffiziUffiziSt. PeterSt. Peter’’ssKitchenKitchenGraceGrace

Synthetic illuminations with same wavelet statistics as real-world illuminations

34

 Image statistics are a powerful shortcut:

 Allow the brain to recognize glossy materials
without explicitly estimating the BRDF

 However, when the statistics are infringed,
perception can fail
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 Visual estimation of surface reflectance
properties: gloss

 Perception of materials that transmit light
 Refraction
 Sub-surface scattering

 Exploiting the assumptions of the visual system to
edit the material appearance of objects in
photographs

OutlineOutline
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Transparent MaterialsTransparent Materials

Metelli’s episcotister

38

Real transparent objectsReal transparent objects



20

39

Real transparent objectsReal transparent objects
 … are not ideal infinitesimal

films

 … obey Fresnel’s equations:
 Specular reflections
 Refraction

 … can appear vividly
transparent without
containing the image cues
traditionally believed to be
important for the perception
of “transparency”.

40

Real transparent objectsReal transparent objects

 Questions:

 What image cues do we
use to tell that
something is
transparent?

 How do we estimate and
represent the refractive
index of transparent
bodies?



21

41

Refractive IndexRefractive Index
 Possibly the most important property that distinguishes

real chunks of transparent stuff from Metelli-type
materials

 Snell’s Law:

sin(θ i)

sin(θ t)

n2

n1
=

42

Refractive IndexRefractive Index

 Varying the refractive index can lead to the distinct
impression that the object is made out a different
material

1.51.2 2.3

refractive index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refractive IndexRefractive Index
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Refraction and image distortionRefraction and image distortion

convex concave

Low RI

54

Refraction and image distortionRefraction and image distortion

convex concave

High RI
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Displacement FieldDisplacement Field

 Measures the way the
transparent object displaces
the position of refracted
features in the image.

d  =  prefracted - pactual

 The perturbation of the
texture caused by refraction
can be captured by the
displacement field.

56

vector field

Displacement FieldDisplacement Field
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Distortion FieldsDistortion Fields

 But, to compute the
displacement field the
visual system would need to
know the positions of non-
displaced features on the
backplane.

 Let us assume, instead, that
the visual system can
estimate the relative
distortions of the texture
(compression or expansion
of texture)

D =  div( d )

58

Distortion FieldsDistortion Fields

distortion fieldimage

 Red = magnification
 Green = minification
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Distance to backplaneDistance to backplane

60

Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane
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Distance to backplaneDistance to backplane

convex concave

near

70

Distance to backplaneDistance to backplane

convex concave

far
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Object thicknessObject thickness
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Asymmetric Matching taskAsymmetric Matching task

 The distortions in the image depend not only on the RI
but also on:
 Geometry of object (curvatures, thickness)
 Distance between object and background
 Distance between viewer and object

 So, if the observers base their judgments of RI
primarily on the pattern of distortions (rather than
correctly estimating the physics), then they should
show systematic errors in their estimates when these
irrelevant scene factors vary.

82

Asymmetric Matching taskAsymmetric Matching task

 Subject adjusts RI of standard probe stimulus to match the
appearance of the other stimulus.

 One scene variable (thickness, distance to back-plane) is clamped at
a different value for test stimulus.

 Measures ability of observer to ‘ignore’ or ‘discount’ the differences
that are caused by irrelevant scene variables

probetest
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Asymmetric Matching taskAsymmetric Matching task

distance to backplane thickness of pebble
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 Observers don’t appear to estimate the physics
correctly.

 Instead, they probably use some heuristic image
measurements (e.g. distortion fields) that are
affected by refractive index, but also by other scene
factors.

 This can lead to illusions (mis-perceptions)

ObservationsObservations

86

 Visual estimation of surface reflectance
properties: gloss

 Perception of materials that transmit light
 Refraction
 Sub-surface scattering

 Exploiting the assumptions of the visual system to
edit the material appearance of objects in
photographs

OutlineOutline
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Image based material editingImage based material editing

 Goal: given single (HDR) photo as input, change appearance
of object to completely different material

 Physically accurate solution would require fully
reconstructing illumination and 3D geometry.
 Beyond state-of-the-art computer vision capabilities

inputinput outputoutput

88

 Alternative: “Perceptually accurate” solution

 Series of simple, highly approximate manipulations, each of
which is provably incorrect, but whose ensemble effect is
visually compelling.

inputinput outputoutput

Image based material editingImage based material editing
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texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

Processing PipelineProcessing Pipeline

alpha matte

segmentation

90

Alpha MattesAlpha Mattes

 By restricting our image modifications to the area within
the boundary of the object, we can create the illusion of
a transformed material.

 Assumption: addition of new non-local effects (e.g. additional
reflexes, caustics, etc.) is not crucial.
 Approximate shadows and reflections are already in place in original

scene
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texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

alpha matte

segmentation

Processing PipelineProcessing Pipeline
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texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

alpha matte

segmentation

Processing PipelineProcessing Pipeline
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How How notnot to do to do
shape-from-shadingshape-from-shading

Try using the state-of-the-art algorithms and you will
generally be disappointed!

inputinput

reconstructionreconstruction
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Try using the state-of-the-art algorithms and you will
generally be disappointed!

inputinput

reconstructionreconstruction

How How notnot to do to do
shape-from-shadingshape-from-shading
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Try using the state-of-the-art algorithms and you will
generally be disappointed!

inputinput

reconstructionreconstruction

How How notnot to do to do
shape-from-shadingshape-from-shading

96

What is the alternative ?What is the alternative ?

We use a simple but suprisingly effective heuristic:

Dark is DeepDark is Deep
In other words …

z(x, y) = L(x, y)z(x, y) = L(x, y)

initial depth estimateinitial depth estimateinputinput

ComplicatedComplicated
shape fromshape from

shadingshading
algorithmalgorithm

WHAT ?WHAT ?
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Bilateral FilterBilateral Filter
 The ‘recovered depths’ are conditioned using a bilateral filter

(Tomasi & Manduchi, 1998; Durand & Dorsey, 2002).
 Simple non-linear edge-preserving filter with kernels in space and

intensity domains.

spacespace

intensityintensity
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Bilateral Filter:Bilateral Filter:
3 main functions3 main functions

 1. De-noising depth-map
 Intuition: depths are generally smoother than intensities in the

real world.

 2. Selectively enhance or remove textures for embossed
effect
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 3. Shape-from-silhouette, like level-sets shape
‘inflation’ (e.g. Williams, 1998)
 Intuition: values outside object are set to zero, so blurring

across boundary makes recovered depths smooth and convex.

Bilateral Filter:Bilateral Filter:
3 main functions3 main functions

100

Forgiving caseForgiving case

 Diffuse surface reflectance leads to clear shading pattern
 Silhouette provides good constraints

originaloriginal reconstructed depthsreconstructed depths
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Difficult caseDifficult case

 Strong highlights create large spurious depth peaks
 Silhouette is relatively uninformative

originaloriginal reconstructed depthsreconstructed depths
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Light from the sideLight from the side

 Shadows and intensity gradient leads to substantial distortions of the
face

originaloriginal reconstructed depthsreconstructed depths
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Importance of viewpointImportance of viewpoint

correct viewpointcorrect viewpoint

 Substantial errors in depth reconstruction are not visible in
transformed image

transformed imagetransformed image

104
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110

Why does it work ?Why does it work ?

 Generic viewpoint assumption (Koenderink & van Doorn,
1979; Binford, 1981; Freeman, 1994)
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 Masking effect of patterns that are subsequently placed on surface
(e.g. highlights).

Why does it work ?Why does it work ?

112

texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

alpha matte

segmentation

Processing PipelineProcessing Pipeline
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texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

alpha matte

segmentation

Processing PipelineProcessing Pipeline
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Re-texturing the objectRe-texturing the object

 Use recovered surface normals as indices into a texture map
 The most important trick: blend original intensities back into image, for

correct shading and highlights
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Re-texturing the objectRe-texturing the object

 Use recovered surface normals as indices into a texture map
 The most important trick: blend original intensities back into image, for

correct shading and highlights
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Re-texturing the objectRe-texturing the object

 The most important trick: blend original intensities back into
image, for correct shading and highlights

 TextureShop (Fang & Hart, 2004) tacitly uses the same trick:
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Other material transformationsOther material transformations

 To create the illusion of transparent or translucent materials, we
map a modified version of the background image onto the surface.

 To apply arbitrary BRDFs, we use
 the recovered surface normals, and
 an approximate reconstruction of the environment

to evaluate the BRDF.

118

texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

alpha matte

segmentation

Processing PipelineProcessing Pipeline
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texture
mapping

output image

bilateral
filter

hole
filling

environment

depth map

alpha matte

segmentation

Processing PipelineProcessing Pipeline

120

Hole filling the easy wayHole filling the easy way
 A number of sophisticated algorithms exist for object removal (e.g. Bertalmio

et al. 2000; Drori et al. 2003; Sun et al. 2005)
 Crude but fast alternative: cut and paste!
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Hole filling the easy wayHole filling the easy way
 A number of sophisticated algorithms exist for object removal (e.g. Bertalmio

et al. 2000; Drori et al. 2003; Sun et al. 2005)
 Crude but fast alternative: cut and paste!
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Hole filling the easy wayHole filling the easy way
 A number of sophisticated algorithms exist for object removal (e.g. Bertalmio

et al. 2000; Drori et al. 2003; Sun et al. 2005)
 Crude but fast alternative: cut and paste!
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Fake transparencyFake transparency
 The human visual system appears does not recognize transparency by

correctly using inverse optics.
 Instead, it seems to rely on the consistency of the image statistics

and patterns of distortion.

124

Environment mapEnvironment map

 Background image is used
to generate full HDR light
probe for image-based
lighting
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Arbitrary Arbitrary BRDFsBRDFs
 Given surface normals and complete HDR light probe, we can

evaluate empirical or parametric BRDFs, as in standard image based
lighting (local effects only).

 We used Matusik’s BRDFs.

originaloriginal blue metallicblue metallic nickelnickel
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Arbitrary Arbitrary BRDFsBRDFs
 Given surface normals and complete HDR light probe, we can

evaluate empirical or parametric BRDFs, as in standard image based
lighting (local effects only).

 We used Matusik’s BRDFs.

originaloriginal nickelnickel
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General PrinciplesGeneral Principles

 Complementary heuristics.  Normally, errors
accumulate as one approximation is added to
another.  The key to our approach is choosing
heuristics such that the errors of one
approximation visually compensate for the errors
of another.

 Exploit visual tolerance for ambiguities to
achieve solutions that are perceptually
acceptable even though they are physically
wrong.
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Using shape toUsing shape to
infer material propertiesinfer material properties
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Using shape toUsing shape to
infer material propertiesinfer material properties

Photo: Ted Adelson
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Final thoughtsFinal thoughts

 ‘Stuff’ adds emotional meaning to our visual environment
and can even play a role in our biological survival
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Final thoughtsFinal thoughts

 Paradox: the brain can be exquisitely sensitive to subtle
differences in material properties, so to do good
renderings you need to get them right

Nvidia advanced skin rendering demo

No subsurface scatteringNo subsurface scattering With subsurface scatteringWith subsurface scattering
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Final thoughtsFinal thoughts

 On the other hand: The brain makes assumptions, so you
can sometimes get the physics hopelessly wrong as long as
you get the statistics roughly right.
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Thank YouThank You
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Some renderings generated using
Henrik Wann Jensen’s DALI
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