
Light maps with Radiance
Giulio Antonutto / au / 2008

The idea

au

The idea

• Use Radiance to “bake” light maps of models

• Light maps can be used for animations and
games

• Maps can used to calculate values over
complex surfaces

• Maps can also be used to bake geometry

au

Are you sure it’s something new?

au

au

Lightmaps from HDR probles, 1st Radiance Workshop
Bernard Spanlang,
VECG Group University College of London, 2003

au

Multidisciplinary 3D Spatialisation Simulation,
Francesco Anselmo,
Arup internal research, 2006

Arup DTF Investment In Arup DTF
Multidisciplinary 3D Spatialization Simulation

C:\3D INTEGRATION TEST\R01-RB.DOC
R01

Page 9 Ove Arup & Partners Consulting Engineers PC
Draft 1 March 13, 2007

Figure 6 – Sketch showing virtual camera positioning concept. One camera for
each polygon is positioned according to the polygon normal.

6.1.1.2 HDR Map Rendering

In this step, for each polygon a HDR map is calculated with Radiance, and its u,v

coordinates stored.

The HDR map is then cropped to reduce memory requirements, and its new u’, v’

coordinates stored.

Figure 7 – Sketch showing the UV mapping and cropping concept for a single HDR
map.

6.1.1.3 Packing of HDR Maps Into Single Image

This step includes:

! Use of a box-packing algorithm to further minimize memory requirements for HDR

map storage.

! Calculation of new u”, v” texture coordinates (see Figure 8)

! Export of a final UV mapped OBJ model.

Arup DTF Investment In Arup DTF
Multidisciplinary 3D Spatialization Simulation

C:\3D INTEGRATION TEST\R01-RB.DOC
R01

Page 9 Ove Arup & Partners Consulting Engineers PC
Draft 1 March 13, 2007

Figure 6 – Sketch showing virtual camera positioning concept. One camera for
each polygon is positioned according to the polygon normal.

6.1.1.2 HDR Map Rendering

In this step, for each polygon a HDR map is calculated with Radiance, and its u,v

coordinates stored.

The HDR map is then cropped to reduce memory requirements, and its new u’, v’

coordinates stored.

Figure 7 – Sketch showing the UV mapping and cropping concept for a single HDR
map.

6.1.1.3 Packing of HDR Maps Into Single Image

This step includes:

! Use of a box-packing algorithm to further minimize memory requirements for HDR

map storage.

! Calculation of new u”, v” texture coordinates (see Figure 8)

! Export of a final UV mapped OBJ model.

Arup DTF Investment In Arup DTF
Multidisciplinary 3D Spatialization Simulation

C:\3D INTEGRATION TEST\R01-RB.DOC
R01

Page 10 Ove Arup & Partners Consulting Engineers PC
Draft 1 March 13, 2007

Figure 8 – Sketch of the box-packing concept for the final HDR map. Larger HDR
images are mapped near the origin. Images reduce in size along the 45° axis of the
u”, v” texture coordinates.

Figure 9 – An HDR cube-map of the sky.

Arup DTF Investment In Arup DTF
Multidisciplinary 3D Spatialization Simulation

C:\3D INTEGRATION TEST\R01-RB.DOC
R01

Page 11 Ove Arup & Partners Consulting Engineers PC
Draft 1 March 13, 2007

Figure 10 – An HDR texture mapped model with a HDR texture mapped sky.

An HDR cube-map of the sky is also generated separately, as shown in Figure 9.

Figure 10 shows the an HDR texture mapped model, as imported into a 3D modeling

software package, with both the HDR lightmap (Figure 4) and the HDR sky cubemap

(Figure 9) enabled.

On the right pane, each polygon is super-imposed on the area of the HDR map that stores

its pre-calculated lighting distribution.

6.2 CATT Walker Plug-In

A plug-in to control CATT Walker remotely via Quest 3D was developed by Darren Hall

(Arup Manchester). The plug-in is developed using C++ and the Steer Walker API and

takes the form of a DLL which is used by the CATT Walker to update the position and

orientation of the CATT Walker listener to match that of the camera within the Quest 3D

Model. The DLL also allows audio playback to be switched on/off. The data used by the

plug-in is accessed via a TCP/IP connection and utilizes a simple bespoke protocol to

manage communication between the CATT Walker (client) and the Quest Model (server).

6.2.1 DLL Operation

The DLL is called by the CATT Walker on startup and after initializing itself with the

relevant data structures, enters a loop which calls an update function - Steer_Update() -

which takes the following parameters:

- xyz[]

An array of floating point numbers defining the spatial position of the listener.

Arup DTF Investment In Arup DTF
Multidisciplinary 3D Spatialization Simulation

C:\3D INTEGRATION TEST\R01-RB.DOC
R01

Page 8 Ove Arup & Partners Consulting Engineers PC
Draft 1 March 13, 2007

Figure 5 – Screenshot of real-time visualization, with HDR light maps pre-calculated
with Radiance.

6.1.1 HDR Lightmaps Calculation Process

The “lightmapped” model is produced using the process outlined below:

1. Virtual cameras are positioned, one for each polygon in the scene mesh.

2. HDR images are calculated with Radiance.

3. Rendered HDR images are packed into a single image, and a UV mapped 3D

model is created.

6.1.1.1 Virtual Camera Positioning

This step consists of:

! Subdividing the mesh into polygons (triangles or quads).

! Calculating the barycentres of polygons in “world coordinates”.

! Positioning orthogonal view cameras (see Figure 6), one for each polygon (the

polygon normal is used to place and orient the cameras); cameras use clipping

planes to avoid rendering of unwanted non-planar surfaces.

One of the limitations of this process is that all surfaces as treated as “lambertian

reflectors” (i.e. they diffuse light uniformly in all directions). Thus, it is not possible to pre-

calculate specular behavior of materials, since it is view dependant.

Arup DTF Investment In Arup DTF
Multidisciplinary 3D Spatialization Simulation

C:\3D INTEGRATION TEST\R01-RB.DOC
R01

Page 7 Ove Arup & Partners Consulting Engineers PC
Draft 1 March 13, 2007

The HDR maps are created with a stand-alone program that reads a Radiance model and

outputs a texture mapped OBJ file for the entire scene or a sub-set of it. This file refers to

a single HDR map, where the “lightmaps” generated for each surface are arranged using a

box-packing algorithm (see Figure 4), to minimize memory requirements when the model

is loaded and displayed in a real-time 3D engine.

Figure 4 – A box-packed HDR lightmap, as generated by the “Radiance plug-in”.

The generated HDR lightmap and OBJ model can then be imported into a real-time 3D

engine (as shown in Figure 5) that supports HDR imaging, such as Quest3D.

Python script + Blender GUI
Number of polygons and resolution are limited
UV mapping is not imported from the model

au

• Previous methods do not use existing UV sets

• New UV sets are instead created in the process

• Speed of the process suffers due to UV creation

• UV sets cannot be exchanged with the CG artist

So?

au

• The same UV set of the model is used for baking

• Dedicated modules (import/calculate/ process...)

• Simple multicore speedup

A refined approach:

The method in 7 steps

au

How does it work?
1. Parse 3D files and import UV mapping and

points

2. Reconstruct the UV transformation matrix

3. Generate a grid of points in UV space (texture
pixels)

4. Find the 3D location of each UV texture pixel

5. Render each pixel separately and in parallel

6. Filter image for seams

7. Save all data together in a single image file

au

What is required:

• Octave / Matlab for fast matrix operations
without the complication of C++

• Radiance

• A 3d model in .obj format with UV mapping

au

1
read the UV and 3D

coordinates from
.obj files

au

Anatomy of an .obj file

WaveFront *.obj file (generated by CINEMA 4D)
g sea
usemtl sea
v -1215.676758 0 1307.318848
v 1784.323242 0 1307.318848
v -1215.676758 0 -1692.681152
v 1784.323242 0 -1692.681152

vt 0 0 0
vt 1 0 0
vt 0 1 0
vt 1 1 0

f 2/2 4/4 3/3 1/1

Example .obj file.

1

au

WaveFront *.obj file (generated by CINEMA 4D)
g sea
usemtl sea
v -1215.676758 0 1307.318848
v 1784.323242 0 1307.318848
v -1215.676758 0 -1692.681152
v 1784.323242 0 -1692.681152

vt 0 0 0
vt 1 0 0
vt 0 1 0
vt 1 1 0

f 2/2 4/4 3/3 1/1

3D coordinates

au

1 Anatomy of an .obj file

WaveFront *.obj file (generated by CINEMA 4D)
g sea
usemtl sea
v -1215.676758 0 1307.318848
v 1784.323242 0 1307.318848
v -1215.676758 0 -1692.681152
v 1784.323242 0 -1692.681152

vt 0 0 0
vt 1 0 0
vt 0 1 0
vt 1 1 0

f 2/2 4/4 3/3 1/1

UV coordinates

au

1 Anatomy of an .obj file

WaveFront *.obj file (generated by CINEMA 4D)
g sea
usemtl sea
v -1215.676758 0 1307.318848
v 1784.323242 0 1307.318848
v -1215.676758 0 -1692.681152
v 1784.323242 0 -1692.681152

vt 0 0 0
vt 1 0 0
vt 0 1 0
vt 1 1 0

f 2/2 4/4 3/3 1/1
Polygon connections
and UV mapping.

au

1 Anatomy of an .obj file

WaveFront *.obj file (generated by CINEMA 4D)
g sea
usemtl sea
v -1215.676758 0 1307.318848
v 1784.323242 0 1307.318848
v -1215.676758 0 -1692.681152
v 1784.323242 0 -1692.681152

vt 0 0 0
vt 1 0 0
vt 0 1 0
vt 1 1 0

f 2/2 4/4 3/3 1/1

au

1

1
2
3
4

1
2
3
4

x

z
y

U

V

1

2

3

4

1 2

34

Anatomy of an .obj file

au

We can read an .obj file and
find, for each triangle in 3D, the
corresponding triangle in UV.

au

Acknowledgement!
The parser proposed is based on the work of
William Harwin,
University Reading,
2006

See here:
http://www.mathworks.com/matlabcentral/fileexchange/10223

http://www.mathworks.com/matlabcentral/fileexchange/10223
http://www.mathworks.com/matlabcentral/fileexchange/10223

2
derive the

transformation matrix
from known UV and 3D points

au

U

V

x

z
y

au

2

This is a UV map

This is a 3D model with textures

T(x,y,z)

T(U,V)

x

z
y

U

V

?

The same triangle T has different vertex
coordinates in the two vector spaces.

au

Is there a way to relate the
corresponding vertex coordinates
between the UV and 3D planes?

au

(http://en.wikipedia.org/wiki/Affine_transformation)

Yes,
all we need is to find the

 affine transformation
 between UV and 3D spaces.

au

http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Affine_transformation

P = M Q

2

Knowing M, it is possible to
convert P to Q or Q to P.

au

(UV)(xyz)

P(x,y,z)

Q(U,V)

U

V

x

z
y

au

P = M Q

2

2
Basically it is possible to convert

point in the UV plane to the
corresponding 3D points...

...so that I can rtrace each
location in 3D and get the value

of the texture...

au

2

au

http://news.povray.org/povray.general/thread/%3Cweb.442a6fe16260549766ffc7a50@news.povray.org%3E/

For details and an extensive
how-to find the M matrix,

try this link:

http://news.povray.org/povray.general/thread/%3Cweb.442a6fe16260549766ffc7a50@news.povray.org%3E/
http://news.povray.org/povray.general/thread/%3Cweb.442a6fe16260549766ffc7a50@news.povray.org%3E/

3
generate a grid of points in UV space,

 convert in 3D space

au

Once the affine transformation M is
found this 3rd step is pretty much just

a matrix multiplication...

Note that each distinct polygon may
has a different M!

au

U

V

Generate a grid of points in UV

3

au

U

V

Reduce the grid to the points inside the triangle.

3

au

x

z
y

Transform from UV to 3D
using the affine transformation matrix M

U

V

3

au

3

au

...now we offset the points from the
3D polygon in the normal direction

Why? Because we need to rtrace
towards the polygon to see it!

x

z
y

Offset points normally.
Compose the final calculation grid,

 including the reverse normal:

[Px Py Pz -Nx -Ny -Nz]

N

3

au

Repeat 2 and 3
for each triangle in the file.

au

The affine transformation M may be
different for different polygons,

therefore we need to evaluate it for
each polygon separately...

au

au

U

V

x

z
y

4

au

Save a final grid
including all points.

Once all polygons have been
converted we can finally save a single

file for the main rtrace calculation.

au

4

au

x y z -Nx -Ny -Nz
........
.........
.........
........
..........
.........

....
..
.

Grid file with all points

Save a final grid including all points.

x

z
y

Or we can split it in several files to
enable a crude, but effective,

multicore approach...

au

4

au

x y z -Nx -Ny -Nz
........
.........
.........
........
..........
.........

....
..
.

Grid file with all points

Divide the file according to the
number of cores, for example 2

x y z -Nx -Ny -Nz
........
.........
.........

x y z -Nx -Ny -Nz
........
.........
.........

Core 2

Core 1

4

au

See here for details on how to split a grid:

http://web.mac.com/geotrupes/iWeb/Main%20site/RadBlog/E549E7F4-6DA2-4D78-8F91-74A4691ED86A.html

http://web.mac.com/geotrupes/iWeb/Main%20site/RadBlog/E549E7F4-6DA2-4D78-8F91-74A4691ED86A.html
http://web.mac.com/geotrupes/iWeb/Main%20site/RadBlog/E549E7F4-6DA2-4D78-8F91-74A4691ED86A.html

5
render with rtrace

au

au

Use & and wait to run a
number of rtrace processes in

parallel.

5

au

rtrace -h- model.oct < grid1.grd > grid1.data &

rtrace -h- model.oct < grid2.grd > grid2.data &

wait

The script continues only when all the calculations have been completed

6
Filter seams

au

If resolution is low or mapping non
optimal we could have some empty

(black) pixels on the edges of
polygons.

au

6

Seams and filtering 6

au

Problem is mitigated by increasing resolution but
never completely resolved...

au

Gaps need to be filled

Seams and filtering 6

au

Value = max(what is around)

Seams and filtering 6

au

There is a lot of bleeding...

Seams and filtering 6

au

But once the data is mapped we
can only see what is on the

polygon...

Seams and filtering 6

7
assemble back in

a single image using pvalue

au

pvalue -r -o -h -H -da -x 512 -y 512 tex.dat > tex.pic

au

7

For instance we could use:

Action!

au

au

Complicate geometry...

au

Complicate geometry...

au

Post process and animations...

au

Post process and animations...

au

Realtime demo...

See here:
http://web.mac.com/geotrupes/iWeb/Main%20site/RadBlog/E60D3F6F-F8DC-4FD9-B1CA-C44AA35D38A9_files/Bake4web.html

http://web.mac.com/geotrupes/iWeb/Main%20site/RadBlog/E60D3F6F-F8DC-4FD9-B1CA-C44AA35D38A9_files/Bake4web.html
http://web.mac.com/geotrupes/iWeb/Main%20site/RadBlog/E60D3F6F-F8DC-4FD9-B1CA-C44AA35D38A9_files/Bake4web.html

Thanks!

au

